Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.12.459978

ABSTRACT

The surge of COVID-19 infection cases is spurred by emerging SARS-CoV-2 variants such as B.1.617. Here we report 38 cryo-EM structures, corresponding to the spike protein of the Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Kappa (B.1.617.1) variants in different functional states with and without its receptor, ACE2. Mutations on the N-terminal domain not only alter the conformation of the highly antigenic supersite of the Delta variant, but also remodel the glycan shield by deleting or adding N-glycans of the Delta and Gamma variants, respectively. Substantially enhanced ACE2 binding was observed for all variants, whose mutations on the receptor binding domain modulate the electrostatics of the binding interfaces. Despite their abilities to escape host immunity, all variants can be potently neutralized by three unique antibodies.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.21.453140

ABSTRACT

Extensive glycosylation of the spike protein of SARS-CoV-2 virus not only shields the major part of it from host immune responses, but glycans at specific sites also act on its conformation dynamics and contribute to efficient host receptor binding, and hence infectivity. As variants of concern arise during the course of the COVID-19 pandemic, it is unclear if mutations accumulated within the spike protein would affect its site-specific glycosylation pattern. The Alpha variant derived from the D614G lineage is distinguished from others by having deletion mutations located right within an immunogenic supersite of the spike N-terminal domain that make it refractory to most neutralizing antibodies directed against this domain. Despite maintaining an overall similar structural conformation, our mass spectrometry-based site-specific glycosylation analyses of similarly produced spike proteins with and without the D614G and Alpha variant mutations reveal a significant shift in the processing state of N-glycans on one specific N-terminal domain site. Its conversion to a higher proportion of complex type structures is indicative of altered spatial accessibility attributable to mutations specific to the Alpha variant that may impact its transmissibility. This and other more subtle changes in glycosylation features detected at other sites provide crucial missing information otherwise not apparent in the available cryogenic electron microscopy-derived structures of the spike protein variants.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.11.443686

ABSTRACT

The UK variant of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), known as B.1.1.7, harbors several point mutations and deletions on the spike (s) protein, which potentially alter its structural epitopes to evade host immunity while enhancing host receptor binding. Here we report the cryo-EM structures of the S protein of B.1.1.7 in its apo form and in the receptor ACE2-bound form. One or two of the three receptor binding domains (RBDs) were in the open conformation but no fully closed form was observed. In the ACE-bound form, all three RBDs were engaged in receptor binding. The B.1.1.7-specific A570D mutation introduced a salt bridge switch that could modulate the opening and closing of the RBD. Furthermore, the N501Y mutation in the RBD introduced a favorable {pi}-{pi} interaction manifested in enhanced ACE2 binding affinity. The N501Y mutation abolished the neutralization activity of one of the three potent neutralizing antibodies (nAbs). Cryo-EM showed that the cocktail of other two nAbs simultaneously bound to all three RBDs. Furthermore, the nAb cocktail synergistically neutralized different SARS-CoV-2 pseudovirus strains, including the B.1.1.7.


Subject(s)
Severe Acute Respiratory Syndrome
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.28.437426

ABSTRACT

The D614G mutation in the spike protein of SARS-CoV-2 alters the fitness of the virus, making it the dominant form in the COVID-19 pandemic. Here we demonstrated by cryo-electron microscopy that the D614G mutation does not significantly perturb the structure of the spike protein, but multiple receptor binding domains are in an upward conformation poised for host receptor binding. The impact of the mutation lies in its ability to eliminate the unusual cold-induced unfolding characteristics, and to significantly increase the thermal stability under physiological pH. Our findings shed light on how the D614G mutation enhances the infectivity of SARS-CoV-2 through a stabilizing mutation, and suggest an approach for better design of spike-protein based conjugates for vaccine development.


Subject(s)
COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-318912.v1

ABSTRACT

Emerging evidence suggests that host glycans influence infection by SARS-CoV-2. Here, we reveal that the receptor-binding domain (RBD) of the spike (S)-protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (SA), with preference for the oligosaccharide of monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind the RBD. The monomeric affinities (Kd = 100-200 μM) of gangliosides for the RBD are similar to heparan sulfate, another negatively charged glycan ligand of the RBD proposed as a viral co-receptor. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to ACE2-expressing cells is decreased upon depleting cell surface SA level using three approaches: sialyltransferase inhibition, genetic knock-out of SA biosynthesis, or neuraminidase treatment. These effects on RBD binding and pseudotyped viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.08.434228

ABSTRACT

Emerging evidence suggests that host glycans influence infection by SARS-CoV-2. Here, we reveal that the receptor-binding domain (RBD) of the spike (S)-protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (SA), with preference for the oligosaccharide of monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind the RBD. The monomeric affinities (Kd = 100-200 M) of gangliosides for the RBD are similar to heparan sulfate, another negatively charged glycan ligand of the RBD proposed as a viral co-receptor. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to ACE2-expressing cells is decreased upon depleting cell surface SA level using three approaches: sialyltransferase inhibition, genetic knock-out of SA biosynthesis, or neuraminidase treatment. These effects on RBD binding and pseudotyped viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.


Subject(s)
Sialic Acid Storage Disease , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL